Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leg Med (Tokyo) ; 59: 102129, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944342

RESUMO

In this study we have provided forensic genetic data of 22 autosomal STRs for Pakhtun, Balochi and Balti population of Pakistan in total of 601 samples. Among these loci, Penta E was found the most discriminatory in all groups and allele 15 was observed most frequent at D22S1045 in Balti whereas in other two populations allele 8 was more common at TPOX. The combined power of discrimination, combined power of exclusion and the combined matching probability was calculated as 0.999999999999999999999999998385, 0.999999988089728 and 1.615 × 10-27 respectively. Based on population differentiation test, significant differences were observed when compared with other populations however, phylogenetic analysis revealed close genetic associations among Pakistani Populations.


Assuntos
Genética Populacional , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Frequência do Gene/genética , Paquistão , Filogenia , Loci Gênicos
2.
J Viral Hepat ; 28(2): 245-259, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33051931

RESUMO

HCV is key pathological factor for inducting insulin resistance. Such HCV-induced insulin resistance is linked with metabolic syndrome, type 2 diabetes mellitus, extrahepatic manifestations, hepatic fibrosis progression and development of hepatocellular carcinoma. DNA methylation alterations can cause developmental abnormalities, tumours and other diseases. In our study, PBMCs were isolated and genomic DNA was extracted. DNA fragmentation was achieved by sonication to 200-400 bp; subsequently, end repair and adenylation was performed. Manufacturer's guidelines were followed to ligate Cytosine-methylated barcodes to sonicated DNA. EZ DNA Methylation-GoldTM Kit was then employed to treat these DNA segments twice with bisulphite. A Library was maintained, sequenced on an Illumina platform and 150/125 bp paired-end reads generated. GO seq R package was used to perform Gene Ontology (GO) enrichment analysis for genes linked to DMRs and DMPs; gene length bias was corrected. We identified 12 945 significant hypermethylated DMRs among all samples that were screened as those with at least 0.1 methylation level differences and P-value less than 0.05. Fisher's exact test with FDR multiple test correction is used for identification of DMPs and DMRs. High throughput bisulphite sequencing (Illumina) was carried out, and bioinformatics analysis was performed to analyse methylation status. Gene ontology (GO) and KEGG pathway enrichment analysis showed differentially methylated regions enriched in various pathways that include PI3K-AKT/IRS1 signalling pathway, metabolic pathway, oxidative phosphorylation, Renin-angiotensin system that are all involved in developing type-2 diabetes (T2D). Our study provides supporting evidence for significant involvement of HCV infection in development of epigenetic modifications in regulation of metabolic disorders like T2D and its complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Hepatite C , Neoplasias Hepáticas , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Humanos , Fosfatidilinositol 3-Quinases
3.
Front Plant Sci ; 11: 476251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281834

RESUMO

The study aims to improve fiber traits of local cotton cultivar through genetic transformation of sucrose synthase (SuS) gene in cotton. Sucrose synthase (SuS) is an important factor that is involved in the conversion of sucrose to fructose and UDP-glucose, which are essential for the synthesis of cell wall cellulose. In the current study, we expressed a synthetic SuS gene in cotton plants under the control of a CaMV35S promoter. Amplification of an 813-bp fragment using gene-specific primers confirmed the successful introduction of SuS gene into the genome of cotton variety CEMB-00. High SuS mRNA expression was observed in two transgenic cotton plants, MA0023 and MA0034, when compared to the expression in two other transgenic cotton plants, MA0035 and MA0038. Experiments showed that SuS mRNA expression was positively correlated with SuS activity at the vegetative (54%) and reproductive stages (40%). Furthermore, location of transgene was found to be at chromosome no. 9 in the form of single insertion, while no signal was evident in non-transgenic control cotton plant when evaluated through fluorescent in situ hybridization and karyotyping analysis. Fiber analyses of the transgenic cotton plants showed increases of 11.7% fiber length, 18.65% fiber strength, and up to 5% cellulose contents. An improvement in the micronaire value of 4.21 was also observed in the MA0038 transgenic cotton line. Scanning electron microscopy (SEM) revealed that the fibers of the SuS transgenic cotton plants were highly spiral with a greater number of twists per unit length than the fibers of the non-transgenic control plants. These results determined that SuS gene expression influenced cotton fiber structure and quality, suggesting that SuS gene has great potential for cotton fiber quality improvement.

4.
PLoS One ; 15(3): e0230519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187234

RESUMO

Promoters are specified segments of DNA that lead to the initiation of transcription of a specific gene. The designing of a gene cassette for plant transformation is significantly dependent upon the specificity of a promoter. Constitutive Cauliflower mosaic virus promoter, CaMV35S, due to its developmental role, is the most commonly used promoter in plant transformation. While Gossypium hirsutum (Gh) being fiber-specific promoter (GhSCFP) specifically activates transcription in seed coat and fiber associated genes. The Expansin genes are renowned for their versatile roles in plant growth. The overexpression of Expansin genes has been reported to enhance fiber length and fineness. Thus, in this study, a local Cotton variety was transformed with Expansin (CpEXPA1) gene, in the form of two separate cassettes, each with a different promoter, named as 35SEXPA1 and FSEXPA1 expressed under CaMV35S and GhSCFP promoters respectively. Integration and Spatiotemporal relative expression of the transgene were studied in an advanced generation. GhSCFP bearing transgene expression was significantly higher in Cotton fiber than other plant parts. While transgene with CaMV35S promoter was found to be continually expressing in all tissues but the expression was lower in fiber than that expressed under GhSCFP. The temporal expression profile was quite interesting with a gradual increasing pattern of both constructs from 1DPA (days post anthesis) to 18DPA and decreased expression from 24 to 30 DPA. Besides the relative expression of promoters, fiber cellulose quantification and fluorescence intensity were also observed. The study significantly compared the two most commonly used promoters and it is deduced from the results that the GhSCFP promoter could be used more efficiently in fiber when compared with CaMV35S which being constitutive in nature preferred for expression in all parts of the plant.


Assuntos
Fibra de Algodão , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...